視頻監控系統與AI、大數據結合
作者:安防監控_視頻監控系統_攝像頭安裝_機房建設_弱電工程-上海銘越科技 發布日期:2020-01-13 16:48
對于視頻監控系統AI,看上去是AI,實際上最后是大數據,大數據才是智能化的基礎。人工智能、深度學習、機器學習、大數據應用在安防AI中, 說到底都是對大數據的采集、建模和應用。
? 數據采集
數據采集,有說數據獲取,這是數據的來源,視頻監控AI中這個數據是來源于視頻監控系統中的視頻流,當然往大了說安防,還包括很多內容,但是基本都是以視頻監控為核心,這里主要指視頻監控系統。
?數據預處理
對于采集到的實時或者歷史視頻,是只能看不能應用的,要調用就得結構化,先給視頻流解碼,把視頻流還原成一張張圖片,再對圖片進行預處理。
可能不同的公司對預處理包含的步驟內容說法不太一致,我是以安軟慧視的技術負責人介紹為準。
先對圖片進行目標清洗垃圾,清洗掉模糊的、不合尺寸的,目標無法識別的、無目標對象的等等,當然,有些場景可能只有這樣的圖像,這需要用到另外一些圖像處理方法,和我們的主題相關但不是一回事。
這樣我們就可以得到基本符合要求的圖像。然后對這些圖像中的目標對象進行檢測和分割,并改變目標的大小與標準圖片大小一致,目標對象包括人形、人臉、車形等,這樣就可以拿去訓練模型了。
?模型訓練
對圖片中的目標對象進行識別,提取和構建模型,在安防AI中,需要的結構化描述是比較具體的,比如對人的描述就包括性別、年齡、發型特征、發飾、上衣款式特征、下衣款式特征、鞋帽款式特征、交通工具特征、隨身物品特征、同行人特征等一系列描述。
對車的描述包括車牌號碼、廠牌、車身顏色、車輛品牌、車輛類型、車輛特征物(如:年檢標、掛飾、紙巾盒、遮陽板)等。
有了這些識別模型,就可以通過語義分析等技術對視頻數據進行分類處理存儲,并通過后端服務器的智能分析功能進行業務處理,將人、車、物的信息從數據中分離出來。
這樣公安民警就可以進行快速檢索、條件搜圖(人)、以圖搜圖,再配以圖片的拍攝地點、時間等數據,就可以進行軌跡查詢,再匹配一下大安防系統中的住宿、手機號碼、車票等大數據,基本上嫌疑人就是插翅難逃,這對民警的破案效率將是百千倍的提升。這才是安防AI真正的價值所在。
- 上一篇:安防AI大數據的應用
- 下一篇:路邊停車改革使高水平視頻監控成為應用趨勢